12 research outputs found

    On AVCs with Quadratic Constraints

    Full text link
    In this work we study an Arbitrarily Varying Channel (AVC) with quadratic power constraints on the transmitter and a so-called "oblivious" jammer (along with additional AWGN) under a maximum probability of error criterion, and no private randomness between the transmitter and the receiver. This is in contrast to similar AVC models under the average probability of error criterion considered in [1], and models wherein common randomness is allowed [2] -- these distinctions are important in some communication scenarios outlined below. We consider the regime where the jammer's power constraint is smaller than the transmitter's power constraint (in the other regime it is known no positive rate is possible). For this regime we show the existence of stochastic codes (with no common randomness between the transmitter and receiver) that enables reliable communication at the same rate as when the jammer is replaced with AWGN with the same power constraint. This matches known information-theoretic outer bounds. In addition to being a stronger result than that in [1] (enabling recovery of the results therein), our proof techniques are also somewhat more direct, and hence may be of independent interest.Comment: A shorter version of this work will be send to ISIT13, Istanbul. 8 pages, 3 figure

    Simulation of a Channel with Another Channel

    Full text link
    In this paper, we study the problem of simulating a DMC channel from another DMC channel under an average-case and an exact model. We present several achievability and infeasibility results, with tight characterizations in special cases. In particular for the exact model, we fully characterize when a BSC channel can be simulated from a BEC channel when there is no shared randomness. We also provide infeasibility and achievability results for simulation of a binary channel from another binary channel in the case of no shared randomness. To do this, we use properties of R\'enyi capacity of a given order. We also introduce a notion of "channel diameter" which is shown to be additive and satisfy a data processing inequality.Comment: 31 pages, 10 figures, and some parts of this work were published at ITW 201
    corecore